
Technological Educational Institute of Crete
School of Applied Technology

Department of Informatics Engineering

Paper Title

Integrating WebRTC and X3DOM:
Bridging the Gap between Communications and Graphics

HaroulaAndrioti, Andreas Stamoulias, Kostas Kapetanakis, Spyros Panagiotakis, Athanasios
G. Malamos

Presentation by: Dr. Athanasios G. Malamos

Introductory notes
• WebRTC is the standardized project that provides browsers and

mobile applications with Real Time Conferencing capabilities via
JavaScript APIs.

• This opens new horizons in web-based applications such as online
gaming, video-conferencing, exchanging of text messages,
immersive technology, etc.

• We introduce the integration of WebRTC capabilities within virtual
3D worlds and present several implementations that bridge
WebRTC and X3DOM technologies.

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

A few words about WebRTC…
The goal of WebRTC is to provide real-time

communication among browsers in a P2P connection with
no use of plugins.

The Three Main APIs of WebRTC

• MediaStream API

• Obtaining audio & video. getUserMedia() method

• RTCPeerConnection API

• Holds audio & video connection between peers

• RTCDataChannel API

• Bidirectional communication between peers for
arbitrary data

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

WebRTC architecture

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Network Address Translation

• STUN (Session Traversal Utilities for NAT) is a client-server
protocol. STUN reveals for every user its public IP address and
port.

• TURN (Traversal Using Relays around NAT) is a relay server.
TURN is used as a final solution if it fails previously to establish
the connection using STUN server

• ICE(Interactive Connectivity Establishment) is an umbrella
framework. ICE tries to find the best solution selecting
between STUN and TURN. Firstly, ICE tries to establish
connection between peers directly via UDP using STUN server.
If this process does not succeed, ICE tries to connect using
TCP. If that fails as well, then ICE uses a TURN relay server.

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Tools that were used

In order to accomplish our applications we used:

• HTML5

• JavaScript

• Node.js

• Socket.io

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

First Application: 3D Collaborative Educational Online
Game

• Our scope was to implement a web-based application which
provides a 3D collaborative environment to exchange
Video/audio and X3D objects using WebRTC technology.

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Second application: Immersive Application

• The objective of this application concerns a 3D
collaborative environment that supports real-time
communication network between peers using a plugin
free, peer-to-peer connection.

• The main advantage of our application is that real-time
video is projected inside the 3D world

Our secret scope is to prove that if you want to use
WebRTC inside 3D scenes……. Do it with X3D. Its smooth
and efficient!

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Draft architecture

Node.js
Server

Socket.io

Client

Serve Page, Handle Requests
Client

Client

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Diagram of the Immersive – Experience
application

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Coding examples…….
Connection 1/2

Client connects via Socket.io to Node.js Server hosted at OpenShift

Server
var myApp = require('http').createServer(handler);

var url = require('url');

var fs = require('fs');

var path = require("path");

var io = require('socket.io')(myApp);

var server_port = process.env.OPENSHIFT_NODEJS_PORT || 8080

var server_ip_address = process.env.OPENSHIFT_NODEJS_IP || '127.0.0.1'

myApp.listen(server_port, server_ip_address, function(){

console.log("Listening on " + server_ip_address + ", server_port " + server_port);

});

Client
var socket = io.connect('server_ip_addres: server_port ');

Connection 2/2
Client utilizing the getUserMedia, attaches its own video stream to an X3D
shape by appending a MovieTexture element with the stream to it’s
appearance element.

var RTCPeerConnection = window.RTCPeerConnection || window.mozRTCPeerConnection ||
window.webkitRTCPeerConnection;

var SessionDescription = window.RTCSessionDescription || window.mozRTCSessionDescription
|| window.webkitRTCSessionDescription;

var pc = new RTCPeerConnection({"iceServers": []});

navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia || navigator.msGetUserMedia;

var constraints={video:true, audio:true};

navigator.getUserMedia(constraints, function (stream) {

var localvideo = document.getElementById("localVideo");

localvideo.src = window.URL.createObjectURL(stream);

var movieTextureNode = document.createElement('MovieTexture');

movieTextureNode.setAttribute("url", '"' + localvideo.src + '"');

if(document.getElementById("video_"+myPanel)){

document.getElementById("video_"+myPanel).appendChild(movieTextureNode);

document.getElementById("frame_"+myPanel)._x3domNode._cf.material.node._xmlNode.s
etAttribute("diffuseColor", "0 1 0");

}};

Video Call-Request

Client create an RTCPeerConnection offer by adding it’s stream and
setting the local session description and then send the video call
request to the server through the open socket with the session
description data.

pc.addStream(stream);

pc.createOffer(function (description) {

pc.setLocalDescription(new SessionDescription(description));

socket.emit("video call", {type: "offer", "description": description});

});

• Server broadcast the client offer request to the other peer

socket.on('video call', function(data){

socket.broadcast.emit('video call', data);

});

Video Call-Response

• Client gets the remote offer request, set the remote session description
data and then create an answer with it’s own local session description
data.

• Client send the video call answer to the server through the open socket
with the session description data.

• Server broadcast the client answer to the other peer and start the video
call

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

socket.on("video call", function(data) {
switch(data.type){

case "iceCandidate":
RTCIceCandidate(data.candidate);
pc.addIceCandidate(new RTCIceCandidate(data.candidate));

break;

case "offer":
pc.setRemoteDescription(new SessionDescription(data.description));
pc.createAnswer(function(description) {
pc.setLocalDescription(new SessionDescription(description));
socket.emit("video call", {type: "answer", "description": description});

});
break;

case "answer":
pc.setRemoteDescription(new SessionDescription(data.description));

break;
}});

Immersive application as shown online

DEMO

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Conclusions & Future Work
• We presented the integration of WebRTC and X3DOM

technologies

• In our developments, we enabled 3D collaborative
environments in which the first one is created for online
gaming capabilities and the second one to support video chat
with multiple users, text messaging, and being able to log in
social media accounts such as email, Facebook, twitter, etc.

• We strongly believe in the synergy between WebRTC and
X3DOM that may widen the range of promising web
applications and services.

• Other technological fields such as online gaming, e-learning
and e-health can benefit from the peer-to-peer and server-
free nature of WebRTC.

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

Thank you!

20th International Conference on 3D Web Technology
June 18-21 –Heraklion,Crete,Greece

